Acids and Bases: Ocean Carbonate System الأحمض والقو اعد: نظام كربونات المحيطت

By
Dr.Muayad Albehadili
Ass. Prof. of Marine Chemistry
College of Marine Sciences
Basrah University
IRAQ

Carbonate chemistry is the most intensely studied subject of marine chemistry. It is central to:

1. The control of seawater pH .
2. Regulation the CO_{2} content of the atmosphere via the biological pump.
3. Determining the ocean's influence on fossil fuel CO_{2} uptake.
4. Determining the extent of burial of CaCO_{3} in marine sediments.

We will review acids and bases and how this relates to the carbonate chemistry of seawater, we will discuss:

1. Acids and Bases in Seawater.
2. Alkalinity and Dissolved Inorganic Carbon (DIC).
3. CaCO_{3} preservation in marine sediments.

Acids and Bases

Arrhenius (1887) proposed that an acid is a substance whose water solution contained an excess of hydrogen ions. The excess H^{+}ions resulted from dissociation of the acid as it was introduced into water. The fact that H^{+}ions cannot exist un-hydrated in water solution led to the Bronsted Concept in which acids are compounds that can donate a proton to another substance which is a proton acceptor. Thus, an acid is considered a proton donor (and a base is a proton acceptor). Proton transfer can only occur if an acid reacts with a base such as:

$$
\begin{aligned}
& \text { Acid1 = Base1 + Proton } \\
& \text { Proton + Base2 = Acid2 }
\end{aligned}
$$

$$
\text { Acid1 }+ \text { Base2 }=\text { Acid2 }+ \text { Base1 }
$$

For example:

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}
\end{aligned}
$$

In the first reaction, HCl transfers a proton to $\mathrm{H}_{2} \mathrm{O}$.
Note that water ($\mathrm{H}_{2} \mathrm{O}$), in the second reaction, can be both an acid (proton donor) and a base (proton acceptor).
To simplify this presentation we will write acids as Arrhenius Acids, in which acids simply react to produce excess hydrogen ions in solution. Such as:

$$
\mathrm{HCl}=\mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

Monoprotic Acids

Let's use acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ as an example of a monoprotic acid and we will abbreviate it as HA. The base form $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$will be A^{-}.
We need to determine the concentrations of 4 species. These are the acid (HA) and base (A-) forms of acetic acid and H^{+}and OH^{-}.
When there are four unknowns we need four equations.
To simplify matters we will neglect activity corrections and assume that activities are equal to concentrations () = []

The 4 key equations are:

$$
\begin{array}{ll}
\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-} & \left.\mathrm{HA}=\text { acid; } \mathrm{H}^{+}=\text {hydrogen ion; } \mathrm{A}^{-}=\text {anion (conjugate base }\right) \\
\mathrm{K}=\left(\mathrm{H}^{+}\right)\left(\mathrm{A}^{-}\right) /(\mathrm{HA}) & \mathrm{K}=\text { thermodynamic equilibrium }(\mathrm{K}=\text { equilibrium constant }) \\
\mathrm{C}_{\mathrm{T}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right] & \mathrm{C}_{\mathrm{T}}=\text { total anion inventory } \\
\mathrm{o}=\left[\mathrm{H}^{+}\right]+\left[\mathrm{A}^{-}\right] & \text {Charge Balance }
\end{array}
$$

(Note that mass and charge balances are written in terms of concentrations, not activities)
To solve for a given concentration in terms of the others, one must have equations for:

- Acid / Base equilibrium
- Total anion inventory
- Charge Balance
${ }_{p} \mathrm{H}\left(-\log \left(\mathrm{H}^{+}\right)\right)$is used as a master variable (e.g. the parameter against which other concentrations are ${ }^{p}$ expressed) for acid-base reactions because it is the variable that determines the distribution of acid and base forms. In addition it is easily measured.

The ${ }_{p} \mathrm{~K}$ of an acid base couple $(-\log \mathrm{K})$ tells you at what ${ }_{\mathrm{p}} \mathrm{H}$ the acid, HA , and base, A^{-}, are equal in concentration and half the total concentration of the anion, $\mathrm{C}_{\text {T. }}$.
$\mathrm{K}_{\mathrm{HA}}=\left[\left(\mathrm{H}^{+}\right)\left(\mathrm{A}^{-}\right)\right] /(\mathrm{HA}), \log \mathrm{K}_{\mathrm{HA}}=\log \left(\mathrm{H}^{+}\right)+\log \left(\mathrm{A}^{-}\right)-\log (\mathrm{HA})$
${ }_{P} \mathrm{~K}=-\log \mathrm{K}$
So ${ }_{P} \mathrm{H}={ }_{P} \mathrm{~K}_{\mathrm{HA}}+\log \left[\left(\mathrm{A}^{-}\right) /(\mathrm{HA})\right]$

Using this equation, we can predict the extent of protonation of an acid dissolved in water. Or describe the distribution of the species $\mathrm{HA}, \mathrm{A}^{-}, \mathrm{H}^{+}$and OH^{-}as a function of ${ }_{\mathrm{p}} \mathrm{H}$.
We need to be able to solve for the concentration of these species. We can do this by two methods. One is algebraic and one is graphical.

Algebraic Method

By combining equations 2 and 3 given above we can write algebraic expressions to solve for the main species of acetic acid (HA) and acetate (A^{-}) as functions of K, CT and ${ }_{p} \mathrm{H}$.

$$
\begin{array}{ll}
{[\mathrm{HA}]=\mathrm{C}_{\mathrm{T}}\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) ;} & \log [\mathrm{HA}]=\log \mathrm{C}_{\mathrm{T}}+\log \left[\mathrm{H}^{+}\right]-\log \left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) \\
{\left[\mathrm{A}^{-}\right]=\mathrm{C}_{\mathrm{T}} \mathrm{~K} /\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) ;} & \log \left[\mathrm{A}^{-}\right]=\log \mathrm{C}_{\mathrm{T}}+\log \mathrm{K}-\log \left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right)
\end{array}
$$

The equation for HA is derived using simple algebra as follows:

1. We start with: $\mathrm{K}=\left(\mathrm{H}^{+}\right)\left(\mathrm{A}^{-}\right) /(\mathrm{HA})$
2. Rearrange the mass balance to solve for $\mathrm{A}=\mathrm{C}_{\mathrm{T}}-\mathrm{HA}$ and substitute for A in the equilibrium expression.
3. We now have: $\mathrm{K}=\left(\mathrm{H}^{+}\right)\left(\mathrm{C}_{\mathrm{T}}-\mathrm{HA}\right) /(\mathrm{HA})$
4. Rearranging this equation gives: $(\mathrm{HA})=\left(\mathrm{H}^{+}\right) \mathrm{C}_{\mathrm{T}} /\left(\mathrm{K}+\left(\mathrm{H}^{+}\right)\right)$

The equation for (A) is derived using the same approach but using HA $=\mathrm{C}_{\mathrm{T}}$ A in step b. If this is not clear please derive this relation yourself.

For such calculations when you know K and the total concentration $\left(\mathrm{C}_{\mathrm{T}}\right)$ you can calculate the concentration of HA and A^{-}for any ${ }_{p} \mathrm{H}$ (or H^{+}).

Graphical Approach

This approach is to construct a graph or distribution diagram showing how the concentrations of all the species vary with ${ }_{p} \mathrm{H}$. Such graphs are constructed using the equations for HA and A given above. The graph is a plot of $-\log$ [conc.] as the Y -axis and pH as the X -axis.
There are three regions for these graphs as discussed below.
For example take acetic acid:
$\mathrm{K}=10^{-4.7}$ (this is the equilibrium constant for acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$); ${ }_{\mathrm{p}} \mathrm{K}=4.7$
$\mathrm{C}_{\mathrm{T}}=10^{-2}$
() $=[]$ (e.g. activities equal concentrations for simplification).

If we make a plot of the concentration of each species as a function of pH there will be three regions:
$\mathbf{A}-{ }_{\mathrm{p}} \mathrm{H}={ }_{\mathrm{p}} \mathrm{K}\left(\mathrm{e} . \mathrm{g} . \mathrm{H}^{+}=\mathrm{K}\right)\left(\right.$ this $_{\mathrm{p}} \mathrm{H}$ is called the system point in the diagram).
If we look at the equilibrium constant:
$\mathrm{K}=\left(\mathrm{H}^{+}\left(\mathrm{A}^{-}\right) /(\mathrm{HA})\right.$ and rearrange it to: $\mathrm{K} /\left(\mathrm{H}^{+}\right)=\left(\mathrm{A}^{-}\right) /(\mathrm{HA})$
We see that when $K=(H)$, at the system point pH , the ratio $\mathrm{K} /\left(\mathrm{H}^{+}\right)$is equal to one and
thus: $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$and since $\mathrm{C}_{\mathrm{T}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$then $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]=1 / 2 \mathrm{C}_{\mathrm{T}}$
or in \log form: $\log [\mathrm{HA}]=\log \left[\mathrm{A}^{-}\right]=\log \left(\mathrm{C}_{\mathrm{T}} / 2\right)=\log \mathrm{C}_{\mathrm{T}}-\log 2=\log \mathrm{C}_{\mathrm{T}}-0.3$
in other words the point where $\log [\mathrm{HA}]=\log [\mathrm{A}-]$ is $0.3 \log$ units lower than $\log \mathrm{C}_{\mathrm{T}}$ and that is where ${ }_{\mathrm{p}} \mathrm{H}={ }_{\mathrm{p}} \mathrm{K}$.
B- When ${ }_{\mathrm{p}} \mathrm{H} \ll{ }_{\mathrm{p}} \mathrm{K}$ the solution is acidic and $\left(\mathrm{H}^{+}\right) \gg \mathrm{K}$
For this condition the algebraic equations for HA and A can be simplified as follows:

$$
[\mathrm{HA}]=\mathrm{C}_{\mathrm{T}}\left[\mathrm{H}^{+}\right] /\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) \approx \mathrm{C}_{\mathrm{T}}\left[\mathrm{H}^{+}\right] /\left(\left[\mathrm{H}^{+}\right]\right) \approx \mathrm{CT}
$$

[HA] $\approx \mathrm{C}_{\mathrm{T}}$ and $\log [\mathrm{HA}] \approx \log \mathrm{C}_{\mathrm{T}}$ (The line for HA has no slope and is equal to C_{T})
Similarly: since $\left[\mathrm{A}^{-}\right]=\mathrm{C}_{\mathrm{T}} \mathrm{K} /\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) \approx \mathrm{C}_{\mathrm{T}} \mathrm{K} /\left(\left[\mathrm{H}^{+}\right]\right)$So $\log \left[\mathrm{A}^{-}\right] \approx \log \mathrm{C}_{\mathrm{T}}+\log \mathrm{K}-\log \mathrm{H}^{+} \approx \log \mathrm{C}_{\mathrm{T}}+\log \mathrm{K}+{ }_{\mathrm{p}} \mathrm{H}$ Note that change in \log [A-] is proportional to +1 change in pH or:
$\delta \log \left[\mathrm{A}^{-}\right] / \delta_{\mathrm{p}} \mathrm{H}=+1$ (The line for [$\left.\mathrm{A}^{-}\right]$has a slope of +1).
Note that in this case:
$\mathrm{K}=\left(\mathrm{H}^{+}\right)\left(\mathrm{A}^{-}\right) /(\mathrm{HA}) ; \quad$ so $\mathrm{K} /\left(\mathrm{H}^{+}\right)=\left(\mathrm{A}^{-}\right) /(\mathrm{HA}) ;$ and since $\mathrm{H}^{+}>\mathrm{K} \quad$ then $[\mathrm{HA}]>\left[\mathrm{A}^{-}\right]$
c) ${ }_{\mathrm{p}} \mathrm{H} \gg{ }_{\mathrm{p}} \mathrm{K}\left(\right.$ e.g. basic solution, $\left.\mathrm{H}^{+} \ll \mathrm{K}\right)$

From: $\left[\mathrm{A}^{-}\right]=\mathrm{C}_{\mathrm{T}} \mathrm{K} /\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) \approx \mathrm{C}_{\mathrm{T}} \mathrm{K} /(\mathrm{K}) \approx \mathrm{C}_{\mathrm{T}}$ and $\log \left[\mathrm{A}^{-}\right]=\log \mathrm{C}_{\mathrm{T}}$ From: $[\mathrm{HA}]=\mathrm{C}_{\mathrm{T}}\left[\mathrm{H}^{+}\right] /$
$\left(\mathrm{K}+\left[\mathrm{H}^{+}\right]\right) \approx \mathrm{C}_{\mathrm{T}}\left[\mathrm{H}^{+}\right] /(\mathrm{K})$
$\log [\mathrm{HA}]=\log \mathrm{C}_{\mathrm{T}}+\log \mathrm{H}^{+}-\log \mathrm{K}=\log \mathrm{C}_{\mathrm{T}}{ }^{-}{ }_{\mathrm{p}} \mathrm{H}-\log \mathrm{K}$
The slope for [HA] is $-1 ; \delta \log$ [HA] / $\delta_{\mathrm{p}} \mathrm{H}=-1$
The steps for constructing the graph are:

- Label axes (${ }_{\mathrm{p}} \mathrm{H}$ and $-\log [\mathrm{C}]$).
- Draw a horizontal line for total concentration; (at $-\log \mathrm{C}_{\mathrm{T}}$), for the acetic acid above this will be at 2 .
- Locate system point, ${ }_{\mathrm{p}} \mathrm{H}={ }_{\mathrm{p}} \mathrm{K}$ and $\mathrm{HA}=\mathrm{A}^{-}$; note that the cross over is 0.3 log units below the C_{T} line, for the acetic acid above this is at pH 4.7 .
- Draw lines for the species, slope $=+1$ for [A] and slope $=-1$ for [HA]; remember that at a ${ }_{\mathrm{p}} \mathrm{H}$ lower than the system point $\mathrm{HA}>\mathrm{A}^{-}$, at a ${ }_{\mathrm{p}} \mathrm{H}$ higher than the system point A- $>$ HA.
- Draw lines for H^{+}and OH^{-}; remember $\mathrm{H}^{+}=\mathrm{OH}^{-}$at ${ }_{\mathrm{p}} \mathrm{H}={ }_{\mathrm{p}} \mathrm{K}=7$.

The lines for H^{+}and OH^{-}can be obtained as follows. Write the acidity reaction for $\mathrm{H}_{2} \mathrm{O} . \mathrm{H}_{2} \mathrm{O}$ $=\mathrm{H}^{+}+\mathrm{OH}^{-} \quad \mathrm{Kw}=\left(\mathrm{H}^{+}\right)\left(\mathrm{OH}^{-}\right) /\left(\mathrm{H}_{2} \mathrm{O}\right)=\left(\mathrm{H}^{+}\right)\left(\mathrm{OH}^{-}\right)$(because we can assume the activity of pure water solvent is equal to one). The value of $\mathrm{Kw}=10^{-14}$.
Thus: $\log \left(\mathrm{H}^{+}\right)+\log \left(\mathrm{OH}^{-}\right)=-14.0$
Or $\quad-{ }_{\mathrm{p}} \mathrm{H}+{ }_{\mathrm{p}} \mathrm{OH}=-14.0$
Or $\quad{ }_{p} \mathrm{H}+{ }_{\mathrm{p}} \mathrm{OH}=14.0$
Thus at ${ }_{\mathrm{p}} \mathrm{H}=4.0$, the ${ }_{\mathrm{p}} \mathrm{OH}=10.0$

Apparent Equilibrium Constants

The difference between concentrations and activities can't be ignored for seawater and chemical oceanographers often use a second approach. Oceanographers frequently use an equilibrium constant defined in terms of concentrations. These are called apparent or operation equilibrium constants. We use the symbol K^{\prime} to distinguish them from K . Formally they are equilibrium constants determined on the seawater activity scale.
Apparent equilibrium constants (K^{\prime}) are written in the same form as K except that all species are written as concentrations. The exception is H^{+}, which is always written as the activity $\left(\mathrm{H}^{+}\right)$. For the monoprotic acid HA we write:

$$
\mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}^{-} \text {and } \quad \mathrm{K}^{\prime}=\left(\mathrm{H}^{+}\right)\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]
$$

The apparent equilibrium constants cannot be calculated from standard free energies of reaction. They have to be determined experimentally in the lab. They must be determined in the same medium or solution to which they will be applied. Thus, if we need a value of K^{\prime} for the acid HA in seawater, someone must have experimentally determined the K for the acidity reaction in a seawater solution with a known salinity (S) at the temperature and pressure of interest. This sounds complicated, and it is. It is a lot of work, but fortunately, it has been done for several important acids in seawater. There are pros and cons for both the K and K^{\prime} approaches. When we use K the pro is that we can calculate the K from ΔG_{r} and one value can be used for all problems in all solutions (one K fits all). The cons are that to use K we need to obtain values for the free ion activity coefficients ($\gamma \mathrm{\gamma}$) and the $\%$ free (f_{i}) for each solution. For K^{\prime} there needs to have been experimental determination of this constant for enough values of S, T and P that equations can be derived to calculate K^{\prime} for the S, T and P of interest. The good news is that when this has been done the values of K^{\prime} are usually more precise than the corresponding value of K. We also do not need values of γi and f_{i} when we use K^{\prime}.

The difference between K and K^{\prime} can be illustrated by this simple example.

$$
\mathrm{K}=\left(\mathrm{H}^{+}\right)\left(\mathrm{A}^{-}\right) /(\mathrm{HA})=\left(\mathrm{H}^{+}\right)\left[\mathrm{A}^{-}\right] \gamma_{\mathrm{T}, \mathrm{~A}} /[\mathrm{HA}] \gamma_{\mathrm{T}, \mathrm{HA}}
$$

Rearrange to get:

$$
\frac{\mathrm{K} \gamma_{\mathrm{T}, \mathrm{HA}}}{\gamma_{\mathrm{T}, \mathrm{~A}^{-}}}=\frac{\left(\mathrm{H}^{+}\right)\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{K}^{\prime}=\underbrace{}_{\gamma_{\mathrm{T}, \mathrm{~A}^{-}}^{\mathrm{K} \gamma_{\mathrm{T}, \mathrm{HA}}}}
$$

You see that the difference in magnitude of K and K^{\prime} is the ratio of the total activity coefficients of the base to the acid.

For:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
& \quad \mathrm{K} 1=\left(\mathrm{HCO}_{3}^{-}\right)\left(\mathrm{H}^{+}\right) /\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)
\end{aligned}
$$

or

$$
\mathrm{K} 1=\frac{\left[\mathrm{HCO}_{3}^{-}\right] \gamma_{\mathrm{T}, \mathrm{HCO}}^{3}-}{}\left(\mathrm{H}^{+}\right)=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left(\mathrm{H}^{+}\right) \gamma_{\mathrm{T}, \mathrm{HCO}}}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \gamma_{\mathrm{T}, \mathrm{H} 2 \mathrm{CO}}^{3}}=10^{-6.3} \text { (from tables) }
$$

The value of K^{\prime} has been determined for the same reaction. At $S=35,25^{\circ} \mathrm{C}$ and 1 atm

$$
\mathrm{Ki}^{\prime}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left(\mathrm{H}^{+}\right)}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=10^{-6.0}
$$

If we set $\mathrm{K} 1=\mathrm{K}_{1}{ }^{\prime}\left(\gamma_{\mathrm{T}, \mathrm{HCO}}^{3}\right.$ $\left./ \gamma_{\mathrm{T}, \mathrm{H} 2 \mathrm{CO}_{3}}\right)$
We can solve for $\gamma_{\mathrm{T}, \mathrm{HCO}_{3}} / \gamma_{\mathrm{T}, \mathrm{H}_{2} \mathrm{CO}_{3}}=\mathrm{K} 1 / \mathrm{Ki}^{\prime}=10^{-6.3} / 10^{-6.0}=10^{-0.3}=\mathbf{5 . 0} \times 10^{-1}$
The difference between K and K ' is due to the activity coefficient ratios.

The acids of Seawater.

There are many acid/base pairs in seawater. However, very few have a pK or a significant concentration in the pH range of seawater ($\mathrm{pH} 7-9$). The concentrations and apparent constants in the table below were taken from Edmond (1970). Some elements form more than one acid.

SPECIES	REACTION	CONCENTRATION		${ }_{\mathrm{p}} \mathrm{K}^{\prime}$
		(moles/kg)	$-\log \mathrm{C}_{\mathrm{T}}$	
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{H}^{+}$			13.9
C	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}$	2.4×10^{-3}	2.6	6.0
	$\mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+}$			9.1
B	$\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{B}(\mathrm{OH})_{4}{ }^{-}+\mathrm{H}^{+}$			
Si	$\mathrm{H}_{2} \mathrm{SiO}_{3} \leftrightarrow \mathrm{HSiO}_{3}^{-}+\mathrm{H}^{+}$			
	$\mathrm{HSiO}_{3}^{-} \leftrightarrow \mathrm{SiO}_{3}{ }^{2-}+\mathrm{H}^{+}$			
P	$\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}$			
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}$			
	$\mathrm{HPO}_{4}{ }^{2-} \leftrightarrow \mathrm{PO}_{3}{ }^{3-}+\mathrm{H}^{+}$			
Mg	$\mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{MgOH}^{+}+\mathrm{H}^{+}$			
Ca	$\mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CaOH}^{+}+\mathrm{H}^{+}$			
S	$\mathrm{HSO}_{4}^{-} \leftrightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}$			
F	$\mathrm{HF} \leftrightarrow \mathrm{F}^{-}+\mathrm{H}^{+}$			
Anoxic Water				
N	$\mathrm{NH}_{4}+\leftrightarrow \mathrm{NH}_{3}\left(\mathrm{aq)}+\mathrm{H}^{+}\right.$			
S	$\mathrm{H}_{2} \mathrm{~S} \leftrightarrow \mathrm{HS}^{-}+\mathrm{H}^{+}$			
	$\mathrm{HS}^{-} \leftrightarrow \mathrm{S}^{2-}+\mathrm{H}^{+}$			

Carbonic Acid

Carbonic acid is a diprotic acid and it can have a gaseous form.

There are 6 species we need to solve for: $\mathrm{CO} 2(\mathrm{~g})$ Carbon Dioxide Gas
$\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ Carbonic Acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}=\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}\right) \mathrm{HCO}_{3}^{-}$Bicarbonate
$\mathrm{CO}_{3}{ }^{2-} \quad$ Carbonate
$\mathrm{H}^{+} \quad$ Proton
$\mathrm{OH}^{-} \quad$ Hydroxide
To solve for six unknowns we need six equations.
Four of these are equilibrium constants. These are written here as K but could also be expressed as K^{\prime}.
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{CO}_{3}^{*} \quad \mathrm{~K}_{\mathrm{H}}=\left(\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right) / \mathrm{P}_{\mathrm{CO} 2}$ (Henry's Law)
(gas concentrations are given as partial pressure; e.g. atmospheric $\mathrm{P}_{\mathrm{CO} 2}=10-3.5$)
2. $\left.\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}=\mathrm{H}++\mathrm{H}_{\mathrm{C}} \mathrm{O}_{3} \quad \mathrm{~K}_{1}=\left(\mathrm{HCO}_{3}{ }^{-}\right)\left(\mathrm{H}^{+}\right) / \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right)$
3. $\mathrm{HCO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$
$\mathrm{K}_{2}=\left(\mathrm{H}^{+}\right)\left(\mathrm{CO}_{3}{ }^{2-}\right) /\left(\mathrm{HCO}_{3}{ }^{-}\right)$
4. $\mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-}$
$\mathrm{Kw}=\left(\mathrm{H}^{+}\right)\left(\mathrm{OH}^{-}\right)$

Representative values for these constants are given below. Equations are given in Millero (1995) from with which you can calculate all K's for any salinity and T, P conditions. The values here are for $S=35,25^{\circ} \mathrm{C}$ and 1 atm.

Constant	Thermodynamic Constant (K)	Apparent Seawater Constant (K^{\prime})
KH	$10^{1.47}$	$10^{-1.53}$
K1	$10^{-6.35}$	$10^{-6.00}$
K2'	10-10.33	$10{ }^{-9.10}$
Kw	$10^{-14.0}$	$10^{-13,9}$

We can also define total CO_{2} (also referred to as DIC, C_{T} or $\sum \mathrm{CO}_{2}$)

$$
\mathrm{C}_{\mathrm{T}}=\left[\mathrm{CO}_{2}(\mathrm{aq})\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]=10^{-2.6}
$$

At equilibrium, the concentration of CO_{2} is about 1000 times more than $\mathrm{H}_{2} \mathrm{CO}_{3}$, so, in practice, the first two equilibria are usually combined by defining:

$$
\mathrm{CO}_{2}(\mathrm{aq})=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{H}_{2} \mathrm{CO}_{3}^{*}
$$

(It is not always stated and I may sometimes forget the (aq), but in all cases the dissolved concentration of CO_{2} in water refers to both $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}$ unless explicitly stated differently)

Combining equations (1), (2) and (3) and solving for $\mathrm{CO}_{2}(\mathrm{aq})$:

$$
\text { (4) } \begin{aligned}
\mathrm{C}_{\mathrm{T}} & =\left[\mathrm{CO}_{2}(\mathrm{aq})\right]+\left\{\mathrm{K}_{1}^{\prime}{ }^{\prime}\left(\left[\mathrm{CO}_{2}(\mathrm{aq})\right] / \mathrm{a}_{\mathrm{H}}{ }^{+}\right\}+\left\{\mathrm{K}_{2}{ }^{\prime} \mathrm{K}_{1}{ }^{\prime}\left(\left[\mathrm{CO}_{2}(\mathrm{aq})\right] / \mathrm{a}_{\mathrm{H}}{ }^{+2}\right)\right\}\right. \\
& =\left[\mathrm{CO}_{2}(\mathrm{aq})\right]\left\{1+\mathrm{K}_{1}{ }^{\prime} / \mathrm{a}_{\mathrm{H}}{ }^{+}+\mathrm{K}_{1} \mathrm{~K}_{2}{ }^{\prime} / \mathrm{a}_{\mathrm{H}}{ }^{+2}\right\}
\end{aligned}
$$

for $\mathrm{HCO}_{3}{ }^{-}$:

(5) $\mathrm{C}_{\mathrm{T}}=\left[\mathrm{HCO}_{3}^{-}\right] \mathrm{a}_{\mathrm{H}}{ }^{+} / \mathrm{K}_{1}{ }^{\prime}+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\mathrm{K}_{2}{ }^{\prime}\left[\mathrm{HCO}_{3}^{-}\right] / \mathrm{a}_{\mathrm{H}}{ }^{+}=\left[\mathrm{HCO}_{3}^{-}\right]\left\{\mathrm{a}_{\mathrm{H}}{ }^{+} / \mathrm{K}_{1}{ }^{\prime}+1+\mathrm{K}_{2}{ }^{\prime} / \mathrm{a}_{\mathrm{H}}{ }^{+}\right\}$

for $\mathrm{CO}_{3}{ }^{\mathbf{2 -}}$:

(6) $\mathrm{C}_{\mathrm{T}}=\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{a}_{\mathrm{H}}{ }^{+2} / \mathrm{K}_{1}{ }^{\prime} \mathrm{K}_{2}{ }^{\prime}+\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{a}_{\mathrm{H}}{ }^{+} / \mathrm{K}_{2}{ }^{\prime}+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]\left\{\mathrm{a}_{\mathrm{H}}{ }^{+2} / \mathrm{K}_{1}{ }^{\prime} \mathrm{K}_{2}{ }^{\prime}+\mathrm{a}_{\mathrm{H}}{ }^{+} / \mathrm{K}_{2}{ }^{\prime}+1\right\}$

when $\mathrm{a}_{+} \gg \mathrm{K}_{1}{ }^{\prime}$	$\mathrm{C}_{T}=\left[\mathrm{CO}_{2}(\mathrm{aq})\right]$	(from eq. 4)
$\mathrm{K}_{1}{ }^{\prime}>\mathrm{a}_{H_{+}}>\mathrm{K}_{2}{ }^{\prime}$	$\mathrm{C}_{T}=\left[\mathrm{HCO}_{3-}\right]$	(from eq. 5)
$\mathrm{K}_{2}{ }^{\prime}>\mathrm{a}_{H_{+}}$	$\mathrm{C}_{T}=\left[\mathrm{CO}_{32}\right]$	(from eq. 6)

at $\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=\left[\mathrm{HCO}_{3}^{-}\right]$	$\mathrm{CT} \equiv 2\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=2\left[\mathrm{HCO}_{3}^{-}\right]$	(from eq. 4 and 5)
$\left[\mathrm{CO}_{3^{2}} \cdot\right]=\left[\mathrm{HCO}_{3^{-}}\right]$	$\mathrm{C}_{\mathrm{T}} \equiv 2\left[\mathrm{CO}_{3^{2}}\right]=2\left[\mathrm{HCO}_{3}\right]$	(from eq. 5 and 6)
$\left[\mathrm{CO}_{2}(\mathrm{aq})\right]=\left[\mathrm{CO}_{3^{-}}\right]$	$\mathrm{CT}_{\mathrm{T}} \equiv\left[\mathrm{CO}_{2}(\mathrm{aq})\left\{2+\mathrm{K}_{1^{\prime}} /\left(\mathrm{K}_{1^{\prime}} \mathrm{K}_{2^{\prime}}\right)_{1 / 2}\right.\right.$	(from eq. 4 and 6)

Water (The solvent)

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{W}}{ }^{\prime}=\mathrm{a}_{\mathrm{H}}\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right] ; & \mathrm{K}_{\mathrm{W}}{ }^{\prime}=10^{-13.9} \\
\log \mathrm{a}_{\mathrm{H}+}+\log \left[\mathrm{OH}^{-}\right]=-13.9 & \mathrm{a}_{\mathrm{H} 2 \mathrm{O}}=1 \\
\mathrm{pH}=-\log \mathrm{a}_{\mathrm{H}+}=\log \left[\mathrm{OH}^{-}\right]+13.9
\end{array}
$$

Construct a Distribution Diagram (Home Work!! bring to class)

- Specify the total CO_{2} (e.g. $\mathrm{C}_{\mathrm{T}}=2.0 \times 10^{-2.6}$)
- Locate C_{T} on the graph and draw a horizontal line for that value.
- Locate the two system points on that line where $\mathrm{pH}=\mathrm{pK}_{1}$ and $\mathrm{pH}=\mathrm{pK}_{2}$.
- Make the crossover point, which is $0.3 \log$ units less than C_{T}
- Sketch the lines for the species.

The Carbonate System in Seawater

For calculations such as CO_{2} gas exchange or CaCO_{3} solubility, we need to know the concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3}$ or $\mathrm{CO}_{3}{ }^{2-}$. We cannot measure these species directly. The four parameters that can be measured are used to define all other variables in the carbonate system these are: pH , Total CO_{2}, Alkalinity and $\mathrm{P}_{\mathrm{CO} 2}$.

Measurements

pH is defined in terms of the activity of H^{+}or as $\mathrm{pH}=-\log \left(\mathrm{H}^{+}\right)$. The historical approach was to measure pH using a glass electrode calibrated with buffer solutions prepared by the National Bureau of Standards. Thought the precision can be quite good $(+0.003)$ the accuracy is no better than about +0.02 . New colorimetric methods have been developed where the ratio of the acid to base is determined using a H^{+}sensitive dye. See Millero (1995) for discussion and references.
Total CO_{2} (expressed as C_{T} or DIC or $\sum \mathrm{CO}_{2}$) is defined as the sum of the concentrations of the three carbonate species: $\mathrm{C}_{\mathrm{T}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
It is determined by acidifying a seawater sample to about a pH of 2 . This converts all the carbonate species to $\mathrm{H}_{2} \mathrm{CO}_{3}$, which is essentially equivalent to $\mathrm{CO}_{2}(\mathrm{aq})$, which can be driven off with an inert carrier gas (e.g. He) and analyzed with an infrared (IR) detector.

Alkalinity

there are two definitions for alkalinity:
The alkalinity of seawater is the sum of the concentrations of anions that accept protons at the pH of seawater.
Another definition for the alkalinity is that it is the difference between the concentrations of total cation and total anion that do NOT exchange $\mathrm{H}+$ in the pH range of seawater. This is an important concept because it helps explain the origin of alkalinity in terms of charge balance in seawater.

Species	$-\log \mathrm{C}$	Concentration	\% of Alkalinity	
HCO_{3}	2.87	$\begin{gathered} \mathrm{mmol} / \mathrm{kg} \\ 1.960 \end{gathered}$	$\begin{gathered} \mathrm{meq} / \mathrm{kg} \\ 1.960 \end{gathered}$	84
$\mathrm{CO}_{32}-$ $\mathrm{B}(\mathrm{OH})_{4}$	$\begin{aligned} & 3.84 \\ & 4.19 \end{aligned}$	$\begin{aligned} & 0.144 \\ & 0.064 \end{aligned}$	$\begin{aligned} & 0.288 \\ & 0.064 \end{aligned}$	$\begin{gathered} 12 \\ 3 \end{gathered}$
HSiO_{3}	5.30	0.005	0.005	0.2
HPO42-	5.68	0.002	0.004	0.2
OH -	6.00	0.001	0.001	0.0
Total Alkalinity (TA) $=2.322 \mathrm{meq} / \mathrm{kg}$				

Generally: TA $($ or Alk $)=\left[\mathrm{HCO}_{3}\right]+2\left[\mathrm{CO}_{3^{2}}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}\right]+\left[\mathrm{HSiO}_{3}\right]+\left[\mathrm{HPO}_{4}\right]+\left[\mathrm{OH}^{-}\right]$ Carbonate alkalinity: $A c=\left[\mathrm{HCO}_{3}\right]+2\left[\mathrm{CO}^{2}{ }^{2}\right]$

$\mathrm{Na}+$	0.46847	$\mathrm{Cl}-$	0.54591
Mg_{2+}	0.10616	$\mathrm{SO} 42-$	0.05646
$\mathrm{Ca} 2+$	0.02066	$\mathrm{Br}-$	0.00084
$\mathrm{~K}+$	0.0102	$\mathrm{~F}-$	0.00014
Sr_{2+}	0.00018		
Total Cations	0.6056	Total Anions	0.60335

```
TA = Cation charge - Anion charge =0.60567-0.60335 = 0.00232= 2.32 meq/kg
```

Since alkalinity is defined as the amount of acid necessary to titrate all the weak bases in seawater (e.g. HCO_{3}-, $\mathrm{CO}_{32}, \mathrm{~B}(\mathrm{OH})_{4}$-) it is determined using an acid titration. The concentration is expressed as equivalents kg_{-1}, rather than moles kg_{-1}, because each species is multiplied by the number of protons it consumes. For example, when acid is added HCO_{3}-consumes one proton as it is converted to $\mathrm{H}_{2} \mathrm{CO}_{3} . \mathrm{CO}_{32}$ - consumes two protons, thus its concentration is multiplied by two $\left(\mathrm{CO}_{32-}+2 \mathrm{H}_{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\right)$.
$\mathbf{P}_{\mathrm{CO} 2}$ is defined as the partial pressure of CO_{2} that a water mass would have if it were in equilibrium with a gas phase. It is determined by equilibrating a known volume of water with a known volume of gas and measuring the CO_{2} in the gas phase, again by IR detection.

Ocean Distributions of pH, DIC, Alk and $\mathbf{P}_{\text {CO2 }}$

pH - The surface values in both oceans are just slightly higher than $\mathrm{pH}=8.1$. This is close to the value expected for water of seawater alkalinity in equilibrium with the atmosphere with $\mathrm{PCO} 2=10^{-3.5} \mathrm{pH}$ then decreases to a minimum in both oceans, however the minimum is much more intense in the Pacific (to about $\mathrm{pH}=7.3$) than the Atlantic ($\mathrm{pH}=7.75$). The depth of this pH minimum corresponds to the depth of the oxygen
minimum. In the deep sea the pH increases slowly, but at all depths the pH in the Pacific (pH ${ }^{\sim} 7.5$) is less than that in the Atlantic ($\mathrm{pH}^{\sim 7.8 \text {). This is a result from } \mathrm{CO} 2 \text { produced by }}$ respiration.
DIC - The total CO_{2} is about $1950 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$ in the surface Atlantic and Pacific. It then increases with depth. The increase is steep in the upper 1000m and then is more gradual in the deeper water. All subsurface DIC concentrations in the deep Pacific (about $2350 \mu \mathrm{~mol} \mathrm{~kg}{ }^{-}$ ${ }^{1}$) are higher than in the deep Atlantic (about $2200 \mu \mathrm{~mol} \mathrm{~kg}^{-1}$). This is a result of organic matter respiration and carbonate dissolution.
Alkalinity - Total alkalinity (includes the concentrations of all titratable bases) in the surface Atlantic is about $2300 \mu \mathrm{eq} \mathrm{kg}{ }^{-1}$, while the surface Pacific is slightly lower at 2250
$\mu e q \mathrm{~kg}^{-1}$. Alkalinity increases less steeply than does DIC. The deep values are lower in the Atlantic ($2350 \mu \mathrm{eq} \mathrm{kg}{ }^{-1}$) than in the Pacific ($2425 \mu \mathrm{eq} \mathrm{kg}{ }^{-1}$).
$\mathbf{P}_{\mathrm{CO} 2}$ - In most regards, the distribution of $\mathrm{P}_{\mathrm{CO} 2}$ is a mirror image of pH . When pH goes down, $\mathrm{P}_{\text {co2 }}$ goes up. The surface values in both oceans are about $350 \mu \mathrm{~atm}$, which is about the value of the atmosphere. $\mathrm{P}_{\mathrm{CO} 2}$ increases to a maximum of about 800μ atm in the Atlantic and over 2000μ atm in the Pacific.

